On the b-coloring of P4-tidy graphs
نویسندگان
چکیده
A b-coloring of a graph is a coloring such that every color class admits a vertex adjacent to at least one vertex receiving each of the colors not assigned to it. The b-chromatic number of a graph G, denoted by χb(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is b-continuous if it admits a b-coloring with t colors, for every t = χ(G), . . . , χb(G), and it is b-monotonic if χb(H1) ≥ χb(H2) for every induced subgraph H1 of G, and every induced subgraph H2 of H1. In this work, we prove that P4-tidy graphs (a generalization of many classes of graphs with few induced P4s) are b-continuous and b-monotonic. Furthermore, we describe a polynomial time algorithm to compute the b-chromatic number for this class of graphs.
منابع مشابه
Restricted coloring problems
In this paper, we obtain polynomial time algorithms to determine the acyclic chromatic number, the star chromatic number and the harmonious chromatic number of P4-tidy graphs and (q, q − 4)-graphs, for every fixed q. These classes include cographs, P4-sparse and P4-lite graphs. We also obtain a polynomial time algorithm to determine the Grundy number of (q, q − 4)-graphs. All these coloring pro...
متن کاملOn P4-tidy graphs
We study the P4-tidy graphs, a new class defined by Rusu [30] in order to illustrate the notion of P4-domination in perfect graphs. This class strictly contains the P4-extendible graphs and the P4-lite graphs defined by Jamison & Olariu in [19] and [23] and we show that the P4-tidy graphs and P4-lite graphs are closely related. Note that the class of P4-lite graphs is a class of brittle graphs ...
متن کاملFixed parameter algorithms for restricted coloring problems
In this paper, we obtain polynomial time algorithms to determine the acyclic chromatic number, the star chromatic number, the Thue chromatic number, the harmonious chromatic number and the clique chromatic number of P4-tidy graphs and (q, q−4)-graphs, for every fixed q. These classes include cographs, P4-sparse and P4-lite graphs. All these coloring problems are known to be NP-hard for general ...
متن کاملGrundy number on P4-classes
In this article, we define a new class of graphs, the fat-extended P4-laden graphs, and we show a polynomial time algorithm to determine the Grundy number of the graphs in this class. This result implies that the Grundy number can be found in polynomial time for any graph of the following classes: P4-reducible, extended P4-reducible, P4-sparse, extended P4-sparse, P4-extendible, P4-lite, P4-tid...
متن کاملOn the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs
For a coloring $c$ of a graph $G$, the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively $sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$, where the summations are taken over all edges $abin E(G)$. The edge-difference chromatic sum, denoted by $sum D(G)$, and the edge-sum chromatic sum, denoted by $sum S(G)$, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 159 شماره
صفحات -
تاریخ انتشار 2011